Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Feng Bao, ${ }^{\text {a }}$ Xing-Qiang Lü, ${ }^{\text {a }}$ Yu-Qin Qiao, ${ }^{\text {a }}$ Qing Wu ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\text {b }}$ *
${ }^{\text {a }}$ School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.040$
$w R$ factor $=0.124$
Data-to-parameter ratio $=16.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

4-[(Z)-(4-Methoxyanilino)phenylmethylene]-5-methyl-2-phenyl-2H-pyrazol-3(4H)-one

The crystal structure of the title compound, $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$, features a central pyrazole ring; the NH unit interacts with the $\mathrm{C}=\mathrm{O}$ unit through an intramolecular hydrogen bond $[\mathrm{N} \cdots \mathrm{O}=$ 2.714 (1) $\AA]$.

Comment

This study is a continuation of our study of $4-[(Z)$-(2-aryl-amino)phenylmethylene]-5-methyl-2-phenyl-2H-pyrazol-3ones, which are readily synthesized by condensing 4-benzoyl-3-methyl-1-phenyl-5-pyrazolone with a primary amine (Bao, Lü, Wu, Kang \& Ng, 2004; Bao, Lü, Wu, \& Ng, 2004; Jiang et al., 2004). A characteristic of such pyrazolones is the short intramolecular hydrogen bond between the amino NH unit and the carbonyl $\mathrm{C}=\mathrm{O}$ unit; the nature of the organic group connected to the amino group does not appear to have a significant effect on the bond unless the group itself possesses sites that are capable of other interactions. The 4-methoxyphenyl derivative, (I) (Fig. 1), similarly exists as a monomeric molecule that features an intramolecular hydrogen bond [2.714 (1) Å].

(I)

Experimental

4-Benzoyl-3-methyl-1-phenyl-5-pyrazolone $(2.20 \mathrm{~g}, 7.9 \mathrm{mmol})$ and p methoxyaniline $(0.99 \mathrm{~g}, 8.0 \mathrm{mmol})$ were dissolved in formic acid $(35 \mathrm{ml})$. The solution was heated under reflux for 8 h . The solvent was removed and the pure product obtained upon recrystallization from a $1: 1$ ethanol $/ n$-heptane mixture (45 ml) in about 80% yield. Crystals were grown from ethanol. Analysis calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$: C 75.20 , H 5.48, N 10.97\%; found: C 75.30 , H 5.39, N 10.68%.

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=383.44$
Triclinic, $P \overline{1}$
$a=6.8262(9) \AA$
$b=10.951(1) \AA$
$c=14.761(1) \AA$
$\alpha=97.259(2)^{\circ}$
$\beta=103.386(2)^{\circ}$
$\gamma=106.018(2)^{\circ}$
$V=1010.2(2) \AA^{\circ}$

Received 21 October 2004 Accepted 26 October 2004 Online 6 November 2004

Data collection

Bruker SMART area-detector diffractometer
φ and ω scans
Absorption correction: none
8643 measured reflections
4350 independent reflections

3303 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.013$
$\theta_{\text {max }}=27.1^{\circ}$
$h=-8 \rightarrow 8$
$k=-13 \rightarrow 13$
$l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.124$
$S=1.01$
4350 reflections
268 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C7	$1.244(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.444(2)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.397(2)$	$\mathrm{C} 8-\mathrm{C} 11$	$1.391(2)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.376(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.433(2)$
N1-C1	$1.414(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.490(2)$
$\mathrm{N} 2-\mathrm{C} 9$	$1.303(2)$		
N2-N1-C1	$118.7(1)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$105.2(1)$
N2-N1-C7	$112.2(1)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 11$	$122.2(1)$
C1-N1-C7	$128.5(1)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 11$	$132.2(1)$
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{N} 1$	$106.4(1)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 8$	$111.7(1)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$126.2(1)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10$	$118.5(1)$
N1-C7-C8	$104.4(1)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$129.8(1)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$129.3(1)$		

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 n \cdots \mathrm{O} 1$	$0.87(1)$	$1.96(1)$	$2.714(1)$	$145(2)$

The H atoms were placed at calculated positions $[\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for the aromatic H atoms and $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl H atoms] and included in the refinement in the riding-model approximation. The amino H atom was located and refined with an $\mathrm{N}-\mathrm{H}$ distance restraint of 0.85 (1) \AA.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine

ORTEPII (Johnson, 1976) plot of (I), with ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China, the Natural Science Foundation of Guangdong Province, Sun Yat-Sen University and and the University of Malaya for supporting this work.

References

Bao, F., Lü, X.-Q., Wu, Q., Kang, B.-S. \& Ng, S. W. (2004). Acta Cryst. E60, o155-o156.
Bao, F., Lü, X.-Q., Wu, Q. \& Ng, S. W. (2004). Acta Cryst. E60, o1244-o1245. Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Jiang, J.-J., Lü, X.-Q., Bao, F., Kang, B.-S. \& Ng, S. W. (2004). Acta Cryst. E60, o1149-o1150.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

